Visualisation of edge effects in side-gated graphene nanodevices
نویسندگان
چکیده
منابع مشابه
Visualisation of edge effects in side-gated graphene nanodevices
Using local scanning electrical techniques we study edge effects in side-gated Hall bar nanodevices made of epitaxial graphene. We demonstrate that lithographically defined edges of the graphene channel exhibit hole conduction within the narrow band of ~60-125 nm width, whereas the bulk of the material is electron doped. The effect is the most pronounced when the influence of atmospheric contam...
متن کاملTransport in multiterminal graphene nanodevices.
We study the transport properties of multiterminal graphene nanodevices using the Landauer-Buttiker approach and the tight binding model. We consider a four-terminal device made at the crossing of a zigzag and armchair nanoribbons and two types of T-junction devices. The transport properties of graphene multiterminal devices are highly sensitive to the details of the junction region. Thus the p...
متن کاملStrain-gated piezotronic logic nanodevices.
Fabrication of the strain-gated inverter (SGI) The SGI was fabricated by bonding two ZnO NWs laterally on a Dura-Lar film. The thickness of the Dura-Lar film is 0.5 mm. The ZnO NWs were synthesized via a physical vapor deposition method reported elsewhere [32] and typically have diameters of 300 nm and lengths of 400 μm (Fig. 1a). The films were first cleaned with acetone, isopropyl alcohol and...
متن کاملContact and edge effects in graphene devices.
Electrical transport studies on graphene have been focused mainly on the linear dispersion region around the Fermi level and, in particular, on the effects associated with the quasiparticles in graphene behaving as relativistic particles known as Dirac fermions. However, some theoretical work has suggested that several features of electron transport in graphene are better described by conventio...
متن کاملExcitonic effects in the optical conductivity of gated graphene.
We study the effect of electron-electron interactions in the optical conductivity of graphene under an applied gate and derive a generalization of Elliott's formula, commonly used for semiconductors, for the optical intensity. We show that excitonic resonances are responsible for several features of the experimentally measured midinfrared response of graphene such as the increase of the conduct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2014
ISSN: 2045-2322
DOI: 10.1038/srep05881